AP Computer Science A

AP Computer Science A

The AP Computer Science A course is an introductory computer science course. A large part of the course involves developing the skills to write programs or parts of programs that correctly solve specific problems. The course also emphasizes the design issues that make programs understandable, adaptable, and when appropriate, reusable. At the same time, the development of useful computer programs and classes is used as a context for introducing other important concepts in computer science, including the development and analysis of algorithms, the development and use of fundamental data structures, and the study of standard algorithms and typical applications. In addition, an understanding of the basic hardware and software components of computer systems and the responsible use of these systems are integral parts of the course.

The goals of the AP Computer Science A course are comparable to those in the introductory sequence of courses for computer science majors offered in college and university computer science departments. Students completing the AP Computer Science A course will be able to:

- o Design and implement computer-based solutions to problems in a variety of application areas.
- o Use and implement commonly-used algorithms and data structures.
- Develop and select appropriate algorithms and data structures to solve problems.
- Code fluently in an object-oriented paradigm using the programming language Java. Students will be familiar with and will be able to use standard Java library classes from the AP Java subset.
- Read and understand a large program consisting of several classes and interacting objects. Students will be able to read and understand a description of the design and development process leading to a program such as the AP Computer Science Labs.
- Identify the major hardware and software components of a computer system, their relationship to one another, and the roles of these components within the system.
- o Recognize the ethical and social implications of computer use.

This course spans 32 weeks, requiring a minimum of 10 hours per week to read lessons and complete 54 programming assignments, 23 quizzes, six written assignments, six Discussion-Based Assessments, and 12 exams. The <u>AP-approved IMACS curriculum</u> is used to

develop fundamental programming knowledge and skills, but enhanced instruction is provided to more thoroughly explore computer science concepts.

Resources:

- Institute of Mathematics and Computer Science (IMACS): Computer Science: Java Programming (<u>www.eimacs.com</u>).
- Institute of Mathematics and Computer Science (IMACS): *Be Prepared for the AP Computer Science Exam* (www.eimacs.com).
- Litvin & Litvin, Java Methods A & AB, Andover, MA. Skylight Publishing 2006.
- College Board, AP Computer Science Labs: Magpie, Picture and Elevens, and the Student Manual.
- The BlueJ Integrated Development Environment (<u>bluej.org</u>).

In the following detailed syllabus, the **Topic Outline** column identifies the concepts from the AP Computer Science Topic Outline, the **Assignments** column indicates assignments that address the concepts, and **the IMACS Lessons** column identifies specific IMACS lessons that address the concepts. The combination of IMACS lessons and specific assignments permits coverage of all concepts in the **Topic Outline**.

---Semester 1---

Module	Scope and Sequence	Topic Outline	Assignments	IMACS Lessons
1	Getting Started	 Program Implementation Console output (System.out.print/println)- IIB3 	 Download and install Java Download and install BlueJ Print student information card 	

2	Variables and Expressions	 Program Implementation Variable Declarations: IIB2b Control – Sequential: IIB4b Program Analysis Identify and correct errors: IIIB2 Limitations of finite representations (e.g., integer bounds, imprecision of floating-point representations, and round-off error): IIIF2 Standard Data Structures Simple data types (int and double): IVA 	 Calculations with int variables Calculations with double variables Calculate test grade averages Convert currencies (dollar, pesos, yen, and Euro) 	 Variables and Arithmetic Expressions Integers 1, 2, 3, 4 Doubles 1, 2 Arithmetic Expressions 1, 2, 3, 4, 5 Declaring and Assigning Values to Variables Casting 1, 2 Pitfalls and Surprises 1, 2 Programming Shortcuts 1, 2, 3 Test #1 and #2
3	Strings and User Input	 Program Implementation Primitive types vs. objects: IIB1 Variable Declarations: IIB2b Java library classes (String): IIC Program Analysis Identify and correct errors: IIIB2 	 Using Pseudocode Reading Source Code Interpreting a secret message written in ASCII Using escape characters to create ASCII art Exploring the Java API Decoding cell phone text message phrases Modify text message and currency converter to accept user input with Scanner class methods 	 Variables and Arithmetic Expressions Strings 1, 2 Concatenation 1, 2 String Methods 1, 2, 3 Displaying Messages Converting between numbers and Strings Test #3

			 Create a receipt for a purchase based on user input Discussion-based Assessment (Modules 1–3) Challenge Exam (Module 1–3) 	
4	Condition Statements	 Program Implementation Control – Conditional: IIB4c Program Analysis Representations of numbers in different bases: IIIF1 Standard Data Structures Simple data types (boolean): IVA 	 Practice base conversions (binary, octal, decimal, and hexadecimal) Calculate basal metabolic heart rate Calculate body mass index Calculate total daily energy expenditure 	 Variables and Arithmetic Expressions Integers 5 Booleans Relational Operators 1, 2 Comparing Strings 1, 2, 3 Logical Operators 1, 2, 3, 4, 5 Program Control Conditional Statements 1, 2, 3, 4 Blocks 1, 2 Practice Test #4 and #6
5	Loops	 Program Implementation Control – Iteration: IIB4d Program Analysis Identify boundary cases and generate appropriate data: IIIA2 	 Simulate tossing a fair or biased coin Predict percentage of males and females in a population Debug a guess my number game Read text files Calculate percentage of male/female, male/male, 	 Program Control Iteration While Loops 1, 2, 3 For loops 1, 2, 3 Practice Test #7 and #8

		 Employ techniques such as using a debugger, adding extra output statements, or hand tracing code: IIIB3 Identify and correct errors: IIIB2 Limitations of finite representations (e.g., integer bounds, imprecision of floating-point representations, and round-off error): IIIF2 	 female/female family combinations read from a sample text file Calculate outcomes of three-ball lottery combinations Predict odds of an item using the Monte Carlo Method Generate random passwords with different character sets Discussion: Computer science careers based on Univ. of Washington videos 	
6	Arrays	 Program Implementation Control – Iteration: IIB4d Program Analysis Understand and modify existing code: IIIA1 Identify and correct errors: IIIB2 Limitations of finite representations (e.g., integer bounds, imprecision of floating-point representations, and round-off error): IIIF2 	 Calculate average temperature and total rainfall and choose output in metric or English units Format output using the printf method Calculate and display average, maximum, and minimum hurricane speed, pressure, and category based on data read in from a text file Challenge Exam (Module 4–6) Discussion-based assessment (Modules 4–6) 	 Variables and Arithmetic Expressions Arrays 1, 2, 3, 4, 5, 6, 7, 8 Program Control For-each loops 1, 2, 3, 4 Test #5 and #9
		 Standard Data Structures Arrays (one dimension): IVE 		

7	Methods	 Program Implementation Top-down development: IIA1 Procedural abstraction: IIA5 Method declarations: IIB2c Parameter declarations: IB2c Control – Methods: IIB4a Java library classes (Math): IIC Program Analysis Limitations of finite representations (e.g., integer bounds, imprecision of floating-point representations, and round-off error): IIIF2 	 Calculate x, y coordinates on the circumference of a circle Calculate the surface gravity on each planet Calculate individual weight on each planet Approximate the value of pi by simulating throwing darts 	 Methods Static Methods 1, 2, 3 Defining New Static Methods 1, 2, 3, 4, 5, 6, 7, 8 The main Method Comments Multiple Variable Declarations Test #10
8	Introduction to OOP and Classes	 Object-Oriented Program Design Read and understand problem description, purpose, and goals: IA1 Apply data abstraction and encapsulation: IA2 Design and implement a class: IA3 	 Identify examples of real-world classes, objects, methods, and attributes Evaluate OOP, procedural, and non-procedural styles Establish an implementation class for an object including instance variables and methods Create a project with multiple objects stored using an array 	 Object-oriented Programming Concepts OOP and Java Classes and Instances 1, 2, 3 Simple Objects Person Class 1, 2, 3, 4, 5, 6, 7, 8 Point Class 1, 2, 3, 4, 5, 6

		 Apply functional decomposition: IA6 Program Implementation Object-oriented development: IIA3 Encapsulation and information hiding: IIA4 Primitive types vs. objects: IIB1 Class declarations: IIB2d Java class libraries (ArrayList): IIC Program Analysis Categorize errors: compile- time, runtime, logic: IIIB1 Standard Data Structures Classes: IVC Lists IVD Arrays IVE 	 Create program documentation using Javadocs Calculate net carbon dioxide footprint based on levels of recycling Discussion: Computer Modeling Challenge Exam (Module 7–8) 	 Public Classes and the Java Compiler The Java Compiler and the Virtual Machine Errors, Exceptions, and Garbage Collection Arrays of Objects 1, 2, 3 ArrayLists 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Java Basics Overloading Methods 1, 2 Test #12 and #13
9	Computer Systems and History	 Standard Data Structures Arrays (2-d): IVE Computing in Context System reliability VIA 	 Distinguish between analog and digital computing Conduct a family computer hardware and software inventory Investigate computer pioneers and devices of early computer history 	 Computing in Context Hardware Systems and System Software Variables and Arithmetic Expressions Arrays 6, 7, 8

			 Explore a timeline of the generations of computers and correlate to historical/cultural events Calculate projectile trajectory table based on launch angle and speed 	• Test 5
10	Semester Exam	•	 Discussion-based assessment (Modules 7–10) Semester Exam 	 Review IMACS practice tests.

---Semester 2---

11	Computing in Context	 Computing in Context System reliability: VIA Privacy: VIB Legal issues and intellectual property: VIC Social and ethical ramifications of computer use: VID 	 Discuss a family identify theft prevention plan Conduct a computer security audit Discuss online safety and intellectual property issues AP Computer Science Labs introduction 	
12	Recursion	 Program Implementation Understand and evaluate recursive methods: IIB4e 	 Discuss examples of real-world recursion 	Java Basics Recursive Methods 1, 2, 3, 4

		AP Computer Science Lab Student Guide: Magpie	 Create Mondrian art using recursion Visualize the recursive leap of faith (the Towers of Hanoi and Martin and the Dragon) Translate piecewise functions into recursive methods Calculate Fibonacci numbers recursively Collaboratively decode a secret message AP Computer Science Lab: Magpie Challenge Exam Module 12 	
13	Inheritance and Polymorphism	 Object-Oriented Program Design Read and understand class specifications and relationships among the classes ("is-a," "has-a" relationships): IA3 Understand and implement a given class hierarchy: IA3 Identify reusable components from existing code using classes and class libraries: IA4 Extend a given class using inheritance: IA3 	 Extend a box class to create a cube class Extend a triangle class to create equilateral and isosceles classes Create a class hierarchy to represent simple terrains in a graphics game AP Computer Science Lab: Magpie Discussion-based assessment (Modules 11–13) 	 Inheritance and Polymorphism Extending Classes 1, 2, 3, 4 Class Hierarchies 1, 2, 3, 4, 5, 6, 7 Polymorphism 1, 2, 3, 4, 5, 6 Overriding Methods 1, 2, 3, 4, 5, 6, 7 Test #15

		 Program Implementation Java library classes (Object): IIC Program Analysis Test classes and libraries in isolation: IIIA1 Perform integration testing: IIIA3 Standard Data Structures Classes: IVC AP Computer Science Lab Student Guide: Magpie 		
14	Classes Revisited	 Object-Oriented Program Design Apply functional decomposition: IA6 Program Implementation Constant declarations: IIB2a Java library classes (Integer and Double): IIC AP Computer Science Lab Student Guide: Picture 	 Calculate prime numbers Perform a frequency analysis on a passage of text Encode and decode a secret message using a Caesar shift AP Computer Science Lab: Picture Challenge Exam Modules 13–14 	 OOP - Class Definitions Revisited Multiple Constructors 1, 2 Overloaded Instance Methods Integer and Double public and private 1, 2 Class Methods 1, 2, 3 Class Variables and Constants 1, 2, 3

15	Abstraction and Interfaces	 Program Implementation Interface declarations: IIB2e Java library classes (List, Comparable): IIC Standard Data Structures Classes: IVC Lists: IVD AP Computer Science Lab Student Guide: Picture 	 Create abstract classes for homework assignments in different subjects Implement an interface to process homework assignments in different subjects Implement Comparable <t> to process homework assignments in different subjects</t> Use an interface and abstract classes to process an inventory of products AP Computer Science Lab: Picture Challenge Exam Module 15 	 final Block Variables Object aliasing 1, 2, 3 Using this 1, 2, 3, 4 Test 16 OOP - Abstractions Abstract Classes 1, 2, 3 Interfaces 1, 2, 3, 4, 5 The List <e></e> Interface 1, 2 The Comparable <t> Interface 1, 2, 3, 4, 5, 6, 7, 8</t> Test 17 Data Structures ArrayLists
16	Algorithms	 Object-Oriented Program Design Choose appropriate data representation and algorithms: IA5 Standard Data Structures Lists: IVD 	 Traverse a set of election results, calculate the total votes, and print an updated report Traverse a set of election results, replace vote counts, calculate the new results, and print an updated report 	 Algorithms Algorithms 1, 2, 3 Traversals Replacements Insertions 1, 2, 3 Deletions

		 Arrays: IVE Standard Algorithms Traversals: VA1 Insertions: VA2 Deletions: VA3 AP Computer Science Lab Student Guide: Picture 	 Traverse a set of election results, insert write-in candidates, calculate the new results, and print an updated report Traverse a set of election results, delete incorrect data, calculate the new results, and print an updated report Process a set of student grades using traversal, insertion, replacement, and deletion methods AP Computer Science Lab: Picture Discussion-based assessment (Modules 14–16) 	
17	Sorting	 Object-Oriented Program Design Choose appropriate data representation and algorithms: IA5 Program Implementation Understand and evaluate recursive methods: IIB4e Standard Algorithms Selection Sort: VC1 Insertion Sort: VC2 Mergesort: VC3 	 Use an insertion sort to arrange a movie list in ascending or descending order by title, release year, or studio Use a selection sort to arrange a movie list in ascending or descending order by title, release year, or studio Use a merge sort to arrange a movie list in ascending or descending or d	 Algorithms Insertion Sort 1, 2, 3, 4, 5, 6 Selection Sort 1, 2, 3, 4, 5, 6, 7 Merge Sort 1, 2, 3, 4, 5, 6 Test 19

		 AP Computer Science Lab Student Guide: Elevens 	 Use insertion, selection, and merge sorts to arrange products in an inventory by name, quantity, identification number, and price AP Computer Science Lab: Elevens 	
18	Searching	 Standard Algorithms Sequential Search: VB1 Binary Search: VB2 AP Computer Science Lab Student Guide: Elevens 	 Conduct a sequential search for specific titles, release year, or artist in a collection of music CDs Conduct a binary search for specific titles, release year, or artist in a collection of music CDs Use binary and sequential searches to locate specific individuals in a contact list by name, relationship, birth month, phone number, or email address AP Computer Science Lab: Elevens Challenge Exam Module 16, 17, and 18 	 Searching Sequential Search 1, 2 Binary Search 1, 2, 3, 4, 5 Test 18
19	Program Analysis	 Program Analysis Identify boundary cases and generate appropriate test data: IIIA1 Perform integration testing: IIIA3 	 Handle exceptions appropriately when processing a set of student grades AP Computer Science Lab: Elevens 	 Algorithms/Program Analysis Introduction Assertions and Exceptions 1, 2, 3, 4

		 Understand runtime exceptions: IIIC Pre- and post-conditions: IIID1 Assertions: IIID2 Exact calculation of statement execution counts: IIIE1 AP Computer Science Lab Student Guide: Elevens 		
20	AP Exam Review		 Exam Review Review for AP Computer Science A Exam Course Reflection Discussion-Based Assessment (Modules 17–20) Segment 2 exam 	 IMACS Be Prepared for the AP Computer Science Exam Exam Format, Grading, and Tips Java Features, Part 1 Java Features, Part 2 Program Design and OOP Concepts Algorithms Past Free Response Questions Practice Exams

APCS Scoring Component	Description	Modules within Course
------------------------	-------------	-----------------------

[C1]	The course teaches students to design and implement computer-based solutions to problems	Modules 2–9, 12–19
[C2a]	The course teaches students to use and implement commonly-used algorithms.5, 6, 8, 9, 12, 16, 17, 18	
[C2b]	The course teaches students to use and implement commonly-used data structures.	6, 8, 9, 14, 15, 16, 17, AP Computer Science Labs (12-19)
[C3]	The course teaches students to select appropriate algorithms and data structures to solve problems.	12, 16, 17, 18
[C4]	The course teaches students to code fluently in an object-oriented paradigm using the programming language Java.	8, 13, 14, 15, AP Computer Science Labs (12-19)
[C5]	The course teaches students to use standard Java library classes from the AP Java subset delineated in Appendix A of the AP Computer Science A Course Description.	1–9, 12–19
[C6]	The course includes a structured lab component comprised of a minimum of 20 hours of hands-on lab experiences.	1–9, 12–19, AP Computer Science Labs 12- 19
[C7]	The course teaches students to recognize the ethical and social implications of computer use.	5, 8, 9, 11, 14